

RA8875 Touch Display Driver Board

Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/ra8875-touch-display-driver-board

Last updated on 2022-12-01 03:29:40 PM EST

©Adafruit Industries Page 1 of 30

3

7

10

12

16

26

29

Table of Contents

Overview

Pinouts

• Power Pins

• SPI Logic pins

• Touch Pins

• Other Pins

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

• Connect the LCD

• You're done!

Arduino Code

• Install Arduino Libraries

• Arduino Wiring

• Build Test

• Text Mode

CircuitPython Code

• CircuitPython Microcontroller Wiring

• Library Installation

• Usage

• Loading a Bitmap

Python Wiring and Usage

• Wiring

• Setup

• Python Installation of RA8875 Library

• Usage

• Pin Mapping

• Display Size

Downloads

• Files & Datasheets

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 30

Overview

Have you gazed longingly at large TFT displays - you know what I'm talking about

here, 4", 5" or 7" TFTs with up to 800x480 pixels. Then you look at your micro-

controller project, but there's no way it can control a display like that, one that

requires 60Hz refresh and 4 MHz pixel clocking. Heck, it doesn't even have enough

pins. I suppose you could move to ARM core processors with TTL display drivers built

in but you've already got all these shields working and anyways you like small micros

you've got.

©Adafruit Industries Page 3 of 30

What if I told you there was a driver chip that could fulfill those longings? A chip that

can control up 800x480 displays, and heck, a resistive touchscreen as well. All you

need to give up is 5 or so SPI pins. Would you even believe me? Well, sit down

because this product may shock you.

The RA8875 is a powerful TFT driver chip. It is a perfect match for any chip that wants

to draw on a big TFT screen but doesn't quite have the oomph (whether it be

hardware or speed). Inside is 768KB of RAM, so it can buffer the display (and

depending on the screen size also have double overlaying). The interface is SPI with

a very basic register read/write method of communication (no strange and convoluted

packets). The chip has a range of hardware-accelerated shapes such as lines,

rectangles, triangles, ellipses, built in and round-rects. There is also a built in English/

European font set (see the datasheet section 7-4-1 for the font table) This makes it

possible to draw fast even over SPI.

The RA8875 can also handle standard 4-wire resistive touchscreens over the same

SPI interface to save you pins. There's an IRQ pin that you can use to help manage

touch interrupts. The touchscreen handler isn't the most precise driver we've used, so

we broke out the X/Y pins so you can connect them up to something like the

STMPE610 which is a very classy touchscreen controller. (http://adafru.it/1571)

©Adafruit Industries Page 4 of 30

http://www.adafruit.com/products/1571
http://www.adafruit.com/products/1571

On the PCB we have the main chip, level shifting so you can use safely with 3-5V

logic. There is also a 3V regulator to provide clean power to the chip and the display.

For the backlight, we put a constant-current booster that can provide 25mA or 50mA

at up to 24V. The connector to the screen is a classic '40 pin' connector. All the 40-pin

TFT's in the Adafruit shop are known to work well. There are other 40-pin displays

that have different pinouts or backlight management and these may not work - they

may even damage the driver or TFT if the boost converter pushes 24V into the

display logic pins! For that reason, we only recommend the displays we've tested and

sell here.

Each order comes with an assembled, tested RA8875 breakout and a stick of header.

You'll also need to purchase a 40-pin TFT screen. We currently have 4.3", 5.0" and

7.0" screens available.

©Adafruit Industries Page 5 of 30

To get you started we've written a graphics library that handles the basic interfacing,

drawing and reading functions. Download the Adafruit RA8875 library from github () a

nd install as described in our tutorial. () Connect a 40 pin TFT to the FPC port and wire

up the SPI interface to an Arduino as described in the example code. Once started

you'll be able to see the graphic/text demo and then touch the screen to 'paint'. For

more advanced details on what the RA8875 can do (and it can do a lot) check the

datasheet.

Please note! The RA8875 does not tri-state the MISO pin, it should not share that pin

with any other SPI device (including an SD card reader) without the use of a 74HC125

or similar ()

For the level shifter we use the CD74HC4050 () which has a typical propagation delay

of ~10ns

©Adafruit Industries Page 6 of 30

https://github.com/adafruit/Adafruit_RA8875
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
https://forums.adafruit.com/viewtopic.php?f=47&t=60533&start=45#p323058
https://forums.adafruit.com/viewtopic.php?f=47&t=60533&start=45#p323058
https://forums.adafruit.com/viewtopic.php?f=47&t=60533&start=45#p323058
https://forums.adafruit.com/viewtopic.php?f=47&t=60533&start=45#p323058
http://www.ti.com/product/CD74HC4050

Pinouts

Power Pins

These are the pins that are involved with powering the RA8875:

VIN - power input, connect to 3-5VDC.

GND - power and signal ground. Connect to your power supply and

microcontroller ground.

3Vo is the output from the onboard 3.3V regulator. If you have a need for a clean

3.3V output, you can use this! It can provide at least 100mA output.

•

•

•

©Adafruit Industries Page 7 of 30

SPI Logic pins

All pins are 3-5 V compliant, so you can use with 3V or 5V micocontrollers

SCK - this is the SPI clock pin, its an input to the chip

MISO - this is the Microcontroller In Serial Out pin, for data sent from the

RA8875 to your processor - this is 3.3V logic output, and can be read by 5V

microcontrollers just fine. This pin does not tri-state when the CS pin is pulled

low, so it cannot share an SPI bus without a tri-state chip like the 74HC125 or

similar

MOSI - this is the Microcontroller Out Serial In pin, for data sent from your

processor to the RA8875

CS - this is the chip select pin, drop it low to start an SPI transaction. Its an input

to the chip. This pin is not pulled high by default! Please either set it high or add

a pullup resistor to keep the chip disabled!

Touch Pins

•

•

•

•

©Adafruit Industries Page 8 of 30

These are the pins that are involved with the touch panel for the RA8875. The X an Y

pairs of pins are ideal for reading touches using an external touch controller such as

the STMPE610:

INT - interrupt pin that goes high when the panel is being touched

Y+ - touch panel Y positive signal

Y- - touch panel Y negative signal

X+ - touch panel X positive signal

X- - touch panel X negative signal

Other Pins

These are the remaining pins for the RA8875:

LITE - PWM Signal used to externally control the Backlight

RST - Reset line for the RA8875. It is active low meaning you would reset the

RA8875 by pulling it this pin to ground.

WAIT - output to indicate that the RA8875 is in a busy state. The RA8875 can't

communicate with the microcontroller when the wait pin is active. It is active low

and could be used by the microcontroller to poll busy status.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 30

Assembly

Prepare the header strip:

Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:

Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 10 of 30

https://learn.adafruit.com//assets/71884
https://learn.adafruit.com//assets/71884
https://learn.adafruit.com//assets/71888
https://learn.adafruit.com//assets/71888

And Solder!

Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

Check your solder joints visually and

continue onto the next steps

©Adafruit Industries Page 11 of 30

https://learn.adafruit.com//assets/71886
https://learn.adafruit.com//assets/71886
https://learn.adafruit.com//assets/71887
https://learn.adafruit.com//assets/71887
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/71889
https://learn.adafruit.com//assets/71889

Connect the LCD

Very carefully slide the ears out, insert the

cable with the gold contacts facing up,

then slide the ears back in.

You're done!

Continue on to the next steps.

Arduino Code

To get this display working on the Arduino, first we will need to install a couple of

Arduino libraries.

Install Arduino Libraries

Lets begin by installing all the libraries we need. Open up the library manager in

Arduino IDE

©Adafruit Industries Page 12 of 30

https://learn.adafruit.com//assets/71890
https://learn.adafruit.com//assets/71890
https://learn.adafruit.com//assets/71891
https://learn.adafruit.com//assets/71891

Search for and install the Following libraries:

Adafruit GFX

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install Adafruit_Bu

sIO (newer versions handle this prerequisite automatically).

Adafruit RA8875

Once you have installed these, restart the Arduino IDE

Arduino Wiring

©Adafruit Industries Page 13 of 30

Start by connecting the power pins

3-5V Vin connects to the Arduino 5V pin

GND connects to Arduino ground

SCK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digit

al 13. On Mega's, its Digital 52 and on Leonardo/Due/Metro M0/M4 it's ICSP-3 (S

ee SPI Connections for more details ())

MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Dig

ital 12. On Mega's, its Digital 50 and on Leonardo/Due/Metro M0/M4 it's ICSP-1 (S

ee SPI Connections for more details ())

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Dig

ital 11. On Mega's, its Digital 51 and on Leonardo/Due/Metro M0/M4 it's ICSP-4 (S

ee SPI Connections for more details ())

CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can

later change this to any pin

RST connects to our Reset pin. We'll be using Digital 9 but you can later change

this pin as well.

INT connects to our Interrupt pin. We'll be using Digital 3 but you can later

change this pin too.

That's it! You don't need to connect any of the other pins.

Build Test

Start by opening up the file -> examples -> Adafruit RA8875 -> buildtest:

Be sure to set the screen size in the sketch to the appropriate size and upload it to

your Arduino

•

•

•

•

•

•

•

•

©Adafruit Industries Page 14 of 30

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

You'll see a graphics test program run, showing drawing lines, text, rectangles,

ellipses, triangles, etc.

Feel free to touch the screen if your LCD Display is a touchscreen. The screen will

start drawing dots where your finger was.

Text Mode

Unlike many displays, the RA8875 requires switching modes between drawing text

and graphics. They can still be drawn on the screen at the same time, but you are

required to manually set the appropriate mode for the type of function you wish to

call.

Start by opening up the file -> examples -> Adafruit RA8875 -> textmode

Just like the previous example, be sure to set the screen size in the sketch to the

appropriate size and upload it to your Arduino

©Adafruit Industries Page 15 of 30

You'll see a text mode test print out "Hello, World!" in a variety of colors and sizes.

CircuitPython Code

It is very easy to use the RA8875 with CircuitPython. We recommend using an M4

based board due to the size of library.

CircuitPython Microcontroller Wiring

Start by connecting the power pins

3-5V Vin connects to the Feather's USB pin

GND connects to the Feather's ground

SCK connects to SPI clock. On the Feather M4 Express, thats also SCK

MISO connects to SPI MISO. On the Feather M4 Express, thats MI

MOSI connects to SPI MOSI. On the Feather M4 Express, thats MO

CS connects to our SPI Chip Select pin. We'll be using Digital 9 but you can later

change this to any pin

RST connects to our Reset pin. We'll be using Digital 10 but you can later change

this pin as well.

INT connects to our Interrupt pin. This pin is actually optional, but improves the

accuracy. We'll be using Digital 11 but you can later change this pin too.

That's it! You don't need to connect any of the other pins.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 30

Library Installation

You'll need to install the Adafruit CircuitPython RA8875 () library on your CircuitPython

board.

You will also need to install the Adafruit CircuitPython BusDevice () library which is the

only dependency.

First, make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next, you'll need to install the necessary libraries to use the hardware--carefully

follow the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (). Our introduction guide has a great page on how to install the library

bundle () for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary

libraries from the bundle:

adafruit_ra8875

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_ra8875 and adafruit_bus_device folders copied over.

•

•

©Adafruit Industries Page 17 of 30

https://github.com/adafruit/Adafruit_CircuitPython_RA8875
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Usage

To demonstrate the usage of the display, we'll use the example python script included

with the library.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Quick test of RA8875 with Feather M4
import time
import busio
import digitalio
import board

from adafruit_ra8875 import ra8875
from adafruit_ra8875.ra8875 import color565

BLACK = color565(0, 0, 0)
RED = color565(255, 0, 0)
BLUE = color565(0, 255, 0)
GREEN = color565(0, 0, 255)
YELLOW = color565(255, 255, 0)
CYAN = color565(0, 255, 255)
MAGENTA = color565(255, 0, 255)
WHITE = color565(255, 255, 255)

Configuration for CS and RST pins:
cs_pin = digitalio.DigitalInOut(board.D9)
rst_pin = digitalio.DigitalInOut(board.D10)
int_pin = digitalio.DigitalInOut(board.D11)

Config for display baudrate (default max is 6mhz):
BAUDRATE = 6000000

Setup SPI bus using hardware SPI:
spi = busio.SPI(clock=board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Create and setup the RA8875 display:
display = ra8875.RA8875(spi, cs=cs_pin, rst=rst_pin, baudrate=BAUDRATE)
display.init()

display.fill(RED)
time.sleep(0.500)
display.fill(YELLOW)
time.sleep(0.500)
display.fill(BLUE)
time.sleep(0.500)
display.fill(CYAN)
time.sleep(0.500)
display.fill(MAGENTA)
time.sleep(0.500)
display.fill(BLACK)
display.circle(100, 100, 50, BLACK)
display.fill_circle(100, 100, 49, BLUE)

display.fill_rect(10, 10, 400, 200, GREEN)
display.rect(10, 10, 400, 200, BLUE)
display.fill_round_rect(200, 10, 200, 100, 10, RED)
display.round_rect(200, 10, 200, 100, 10, BLUE)
display.pixel(10, 10, BLACK)
display.pixel(11, 11, BLACK)
display.line(10, 10, 200, 100, RED)
display.fill_triangle(200, 15, 250, 100, 150, 125, YELLOW)

©Adafruit Industries Page 18 of 30

display.triangle(200, 15, 250, 100, 150, 125, BLACK)
display.fill_ellipse(300, 100, 100, 40, BLUE)
display.ellipse(300, 100, 100, 40, RED)
display.curve(50, 100, 80, 40, 2, BLACK)
display.fill_curve(50, 100, 78, 38, 2, WHITE)

display.txt_set_cursor(display.width // 2 - 200, display.height // 2 - 20)
display.txt_trans(WHITE)
display.txt_size(2)
testvar = 99
display.txt_write("Player Score: " + str(testvar))

display.touch_init(int_pin)
display.touch_enable(True)

x_scale = 1024 / display.width
y_scale = 1024 / display.height

Main loop:
while True:
 if display.touched():
 coords = display.touch_read()
 display.fill_circle(
 int(coords[0] / x_scale), int(coords[1] / y_scale), 4, MAGENTA
)
 display.txt_color(WHITE, BLACK)
 display.txt_set_cursor(display.width // 2 - 220, display.height // 2 - 20)
 display.txt_size(2)
 display.txt_write(
 "Position ("
 + str(int(coords[0] / x_scale))
 + ", "
 + str(int(coords[1] / y_scale))
 + ")"
)

We start out by importing any libraries we want to use in our code. This includes a

special function that converts 24-bit color into 16-bit color which is what this display

uses.

import time
import busio
import digitalio
import board

©Adafruit Industries Page 19 of 30

import adafruit_ra8875.ra8875 as ra8875
from adafruit_ra8875.ra8875 import color565

Next, we define a bunch of colors for ease of reuse.

BLACK = color565(0, 0, 0)
RED = color565(255, 0, 0)
BLUE = color565(0, 255, 0)
GREEN = color565(0, 0, 255)
YELLOW = color565(255, 255, 0)
CYAN = color565(0, 255, 255)
MAGENTA = color565(255, 0, 255)
WHITE = color565(255, 255, 255)

Next, we initialize SPI and the display. 6 MHz was about the fastest that it would

stably run in CircuitPython. Initialization is much easier in CircuitPython. By default this

runs for a display of 800x480 pixels in size. If you have a display of a different size

such as the 480x272, you could pass the width and height parameters into the

constructor.

Configuration for CS and RST pins:
cs_pin = digitalio.DigitalInOut(board.D9)
rst_pin = digitalio.DigitalInOut(board.D10)
int_pin = digitalio.DigitalInOut(board.D11)

Config for display baudrate (default max is 6mhz):
BAUDRATE = 6000000

Setup SPI bus using hardware SPI:
spi = busio.SPI(clock=board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Create and setup the RA8875 display:
display = ra8875.RA8875(spi, cs=cs_pin, rst=rst_pin, baudrate=BAUDRATE)
display.init()

Next, we fill the screen with a few different colors.

display.fill(RED)
time.sleep(0.500)
display.fill(YELLOW)
time.sleep(0.500)
display.fill(BLUE)
time.sleep(0.500)
display.fill(CYAN)
time.sleep(0.500)
display.fill(MAGENTA)
time.sleep(0.500)

After that, we clear the screen and draw a bunch of different shapes to demonstrate

the hardware accelerated shape drawing functions.

display.fill(BLACK)
display.circle(100, 100, 50, BLACK)
display.fill_circle(100, 100, 49, BLUE)

©Adafruit Industries Page 20 of 30

display.fill_rect(11, 11, 398, 198, GREEN)
display.rect(10, 10, 400, 200, BLUE)
display.fill_round_rect(200, 10, 200, 100, 10, RED)
display.round_rect(199, 9, 202, 102, 12, BLUE)
display.pixel(10, 10, BLACK)
display.pixel(11, 11, BLACK)
display.line(10, 10, 200, 100, RED)
display.triangle(200, 15, 250, 100, 150, 125, BLACK)
display.fill_triangle(200, 16, 249, 99, 151, 124, YELLOW)
display.ellipse(300, 100, 100, 40, RED)
display.fill_ellipse(300, 100, 98, 38, BLUE)
display.curve(50, 100, 80, 40, 2, BLACK)
display.fill_curve(50, 100, 78, 38, 2, WHITE)

Next, we draw some text on the screen. Please note that unlike the Arduino library,

mode changing is automatically handled in the library.

display.txt_set_cursor(display.width // 2 - 200, display.height // 2 - 20)
display.txt_trans(WHITE)
display.txt_size(2)
testvar = 99
display.txt_write("Player Score: " + str(testvar))

Finally, touch is enabled and in the main loop we read the coordinates of the text,

display where the touch occurred on the screen and draw circles in that location.

display.touch_init(int_pin)
display.touch_enable(True)

x_scale = 1024 / display.width
y_scale = 1024 / display.height

Main loop:
while True:
 if display.touched():
 coords = display.touch_read()
 display.fill_circle(int(coords[0]/x_scale), int(coords[1]/y_scale), 4,
MAGENTA)
 display.txt_color(WHITE, BLACK)
 display.txt_set_cursor(display.width // 2 - 220, display.height // 2 - 20)
 display.txt_size(2)
 display.txt_write("Position (" + str(int(coords[0]/x_scale)) + ", " +
 str(int(coords[1]/y_scale)) + ")")

Loading a Bitmap

In this next example, we'll decode and load a bitmap that is stored as a file on the

MicroController. Although the image is included in the examples folder of the library,

we have provided a link to it for your convenience.

Click here to Download

ra8875_blinka.bmp

©Adafruit Industries Page 21 of 30

https://raw.githubusercontent.com/adafruit/Adafruit_CircuitPython_RA8875/master/examples/ra8875_blinka.bmp

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Quick bitmap test of RA8875 with Feather M4
import struct

import busio
import digitalio
import board

from adafruit_ra8875 import ra8875
from adafruit_ra8875.ra8875 import color565

WHITE = color565(255, 255, 255)

Configuration for CS and RST pins:
cs_pin = digitalio.DigitalInOut(board.D9)
rst_pin = digitalio.DigitalInOut(board.D10)

Config for display baudrate (default max is 6mhz):
BAUDRATE = 8000000

Setup SPI bus using hardware SPI:
spi = busio.SPI(clock=board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Create and setup the RA8875 display:
display = ra8875.RA8875(spi, cs=cs_pin, rst=rst_pin, baudrate=BAUDRATE)
display.init()
display.fill(WHITE)

def convert_555_to_565(rgb):
 return (rgb & 0x7FE0) << 1 | 0x20 | rgb & 0x001F

class BMP:
 def __init__(self, filename):
 self.filename = filename
 self.colors = None
 self.data = 0
 self.data_size = 0
 self.bpp = 0
 self.width = 0
 self.height = 0
 self.read_header()

 def read_header(self):
 if self.colors:
 return
 with open(self.filename, "rb") as f:
 f.seek(10)
 self.data = int.from_bytes(f.read(4), "little")
 f.seek(18)
 self.width = int.from_bytes(f.read(4), "little")
 self.height = int.from_bytes(f.read(4), "little")
 f.seek(28)
 self.bpp = int.from_bytes(f.read(2), "little")
 f.seek(34)
 self.data_size = int.from_bytes(f.read(4), "little")
 f.seek(46)
 self.colors = int.from_bytes(f.read(4), "little")

 def draw(self, disp, x=0, y=0):
 print("{:d}x{:d} image".format(self.width, self.height))
 print("{:d}-bit encoding detected".format(self.bpp))
 line = 0
 line_size = self.width * (self.bpp // 8)
 if line_size % 4 != 0:

©Adafruit Industries Page 22 of 30

 line_size += 4 - line_size % 4
 current_line_data = b""
 with open(self.filename, "rb") as f:
 f.seek(self.data)
 disp.set_window(x, y, self.width, self.height)
 for line in range(self.height):
 current_line_data = b""
 line_data = f.read(line_size)
 for i in range(0, line_size, self.bpp // 8):
 if (line_size - i) < self.bpp // 8:
 break
 if self.bpp == 16:
 color = convert_555_to_565(line_data[i] | line_data[i + 1]
<< 8)
 if self.bpp in (24, 32):
 color = color565(
 line_data[i + 2], line_data[i + 1], line_data[i]
)
 current_line_data = current_line_data + struct.pack(">H", color)
 disp.setxy(x, self.height - line + y)
 disp.push_pixels(current_line_data)
 disp.set_window(0, 0, disp.width, disp.height)

bitmap = BMP("/ra8875_blinka.bmp")
x_position = (display.width // 2) - (bitmap.width // 2)
y_position = (display.height // 2) - (bitmap.height // 2)
bitmap.draw(display, x_position, y_position)

Let's dive in and take a look at how the code works. Just like the previous example,

we start out by importing the libraries we need. In this case, we also need struct to

help with color encoding.

import busio
import digitalio
import board

import adafruit_ra8875.ra8875 as ra8875
from adafruit_ra8875.ra8875 import color565
try:
 import struct
except ImportError:
 import ustruct as struct

©Adafruit Industries Page 23 of 30

White is the only color we will use, so we define that here.

WHITE = color565(255, 255, 255)

Next, we initialize the screen and set the background to white.

Configuration for CS and RST pins:
cs_pin = digitalio.DigitalInOut(board.D9)
rst_pin = digitalio.DigitalInOut(board.D10)

Config for display baudrate (default max is 6mhz):
BAUDRATE = 6000000

Setup SPI bus using hardware SPI:
spi = busio.SPI(clock=board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Create and setup the RA8875 display:
display = ra8875.RA8875(spi, cs=cs_pin, rst=rst_pin, baudrate=BAUDRATE)
display.init()
display.fill(WHITE)

We have a helper function next for decoding 16-bit bitmaps into the correct bit

structure. Even though we are using a 24-bit bmp in this example, if you would like to

replace the image with one of your own and it happens to be a 16-bit bitmap, it will

still work.

def convert_555_to_565(rgb):
 return (rgb & 0x7FE0) << 1 | 0x20 | rgb & 0x001F

After that, we define a BMP class that will read the headers, decode the bitmap, and

draw it to the screen. It starts off by initializing all of the values to 0 or None.

class BMP(object):
 def __init__(self, filename):
 self.filename = filename
 self.colors = None
 self.data = 0
 self.data_size = 0
 self.bpp = 0
 self.width = 0
 self.height = 0
 self.read_header()

Then it goes through and reads the important information in the header at specific

places in the file. In this case, the bytes are in little endian format which means the

bytes are arranged with starting with the least significant byte values are at the

smallest address. If you are interested, you can read more about endianness, on Wiki

pedia. ()

©Adafruit Industries Page 24 of 30

https://en.wikipedia.org/wiki/Endianness#Little-endian
https://en.wikipedia.org/wiki/Endianness#Little-endian

 def read_header(self):
 if self.colors:
 return
 with open(self.filename, 'rb') as f:
 f.seek(10)
 self.data = int.from_bytes(f.read(4), 'little')
 f.seek(18)
 self.width = int.from_bytes(f.read(4), 'little')
 self.height = int.from_bytes(f.read(4), 'little')
 f.seek(28)
 self.bpp = int.from_bytes(f.read(2), 'little')
 f.seek(34)
 self.data_size = int.from_bytes(f.read(4), 'little')
 f.seek(46)
 self.colors = int.from_bytes(f.read(4), 'little')

In the Draw function we read the appropriate amount of data depending on the file

encoding, make sure it's in a format that the display understands, and push it to the

display. Because the data is pushed directly out to the RA8875, the amount of

memory required is pretty minimal.

 def draw(self, disp, x=0, y=0):
 print("{:d}x{:d} image".format(self.width, self.height))
 print("{:d}-bit encoding detected".format(self.bpp))
 line = 0
 line_size = self.width * (self.bpp//8)
 if line_size % 4 != 0:
 line_size += (4 - line_size % 4)
 current_line_data = b''
 with open(self.filename, 'rb') as f:
 f.seek(self.data)
 disp.set_window(x, y, self.width, self.height)
 for line in range(self.height):
 current_line_data = b''
 line_data = f.read(line_size)
 for i in range(0, line_size, self.bpp//8):
 if (line_size-i) < self.bpp//8:
 break
 if self.bpp == 16:
 color = convert_555_to_565(line_data[i] | line_data[i+1]
<< 8)
 if self.bpp == 24 or self.bpp == 32:
 color = color565(line_data[i+2], line_data[i+1],
line_data[i])
 current_line_data = current_line_data + struct.pack(">H",
color)
 disp.setxy(x, self.height - line + y)
 disp.push_pixels(current_line_data)
 disp.set_window(0, 0, disp.width, disp.height)

Finally, we declare our class, figure out the center of the screen and draw the bitmap.

This allows it to display on both the larger and smaller screens.

bitmap = BMP("/ra8875_blinka.bmp")
x_position = (display.width // 2) - (bitmap.width // 2)
y_position = (display.height // 2) - (bitmap.height // 2)
bitmap.draw(display, x_position, y_position)

©Adafruit Industries Page 25 of 30

Python Wiring and Usage

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RA8875 (

) module. This module allows you to easily write Python code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

3-5V Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

SCK connects to SPI clock. On the Raspberry Pi, thats SLCK

MISO connects to SPI MISO. On the Raspberry Pi, thats also MISO

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using GPIO 13.

RST connects to our Reset pin. We'll be using GPIO 5 but you can later change

this pin later.

INT connects to our Interrupt pin. This pin is actually optional, but improves the

accuracy. We'll be using GPIO 6 but you can later change this pin too.

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use

the TFT purely from 'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device so check

before continuing

•

•

•

•

•

•

•

•

©Adafruit Industries Page 26 of 30

https://github.com/adafruit/Adafruit_CircuitPython_RA8875
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Download Fritzing Diagram

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of RA8875 Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-ra8875

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

•

•

©Adafruit Industries Page 27 of 30

https://cdn-learn.adafruit.com/assets/assets/000/091/173/original/RA8875.fzz?1589498651
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

That's it. You should be ready to go.

Usage

To use the RA8875 with the Raspberry Pi, you only need to make one or two changes

to the CircuitPython examples in order to use them on the Pi.

Pin Mapping

First we need to change the Pin mapping because some of the pins that are used on

the Feather are not available on the Raspberry Pi. Find the section with the following

code:

cs_pin = digitalio.DigitalInOut(board.D9)
rst_pin = digitalio.DigitalInOut(board.D10)
int_pin = digitalio.DigitalInOut(board.D11)

and change it to the following:

cs_pin = digitalio.DigitalInOut(board.D13)
rst_pin = digitalio.DigitalInOut(board.D5)
int_pin = digitalio.DigitalInOut(board.D6)

Display Size

Next, the driver defaults to the 480x800 sized display. If you have a different size, you

will need to add a couple of parameters. Find the line that looks like this:

display = ra8875.RA8875(spi, cs=cs_pin, rst=rst_pin, baudrate=BAUDRATE)

And go ahead and add a width and height parameter so if for instance, you had

the 480x272 display, it would look like this:

display = ra8875.RA8875(spi, cs=cs_pin, rst=rst_pin, baudrate=BAUDRATE, width=480,
height=272)

That should be it. You should be able to run both examples as described on the

CircuitPython page.

©Adafruit Industries Page 28 of 30

Downloads

Files & Datasheets

RA8875 Full Datasheet ()

RA8875 App note ()

Fritzing object in Adafruit Fritzing library ()

EagleCAD PCB Files on GitHub ()

Schematic

•

•

•

•

©Adafruit Industries Page 29 of 30

https://cdn-shop.adafruit.com/datasheets/RA8875_DS_V19_Eng.pdf
https://cdn-shop.adafruit.com/datasheets/ra8875+app+note.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-RA8875-Breakout-Board-PCB

Fabrication Print

©Adafruit Industries Page 30 of 30

	RA8875 Touch Display Driver Board
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino Code
	CircuitPython Code
	Python Wiring and Usage
	Downloads

	Overview
	Pinouts
	Power Pins
	SPI Logic pins
	Touch Pins
	Other Pins
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!
	Connect the LCD
	You're done!

	Arduino Code
	Install Arduino Libraries
	Adafruit GFX
	Adafruit RA8875

	Arduino Wiring
	Build Test
	Text Mode
	CircuitPython Code
	CircuitPython Microcontroller Wiring
	Library Installation
	Usage
	Loading a Bitmap
	Python Wiring and Usage
	Wiring
	Setup
	Python Installation of RA8875 Library

	Usage
	Pin Mapping
	Display Size

	Downloads
	Files & Datasheets
	Schematic
	Fabrication Print

